

<u>Website</u> <u>LinkedIn</u> <u>mmamu003@ucr.edu</u>

Md Abdullah Al Mamun

3rd Year Ph.D. Student in CS at UC Riverside

Advised by: Prof. Nael Abu-Ghazaleh

Primary Research Area:

- Generative Al
- Secure AI Systems
- Privacy/Security of ML & LLM
- Federated Learning

Recent Research projects:

- ML models as storage channels and their (mis-)applications
- Bypassing guardrails in LLM

Yao et al. (2023)

Large Language Model Unlearning

Overview

Overview

• Penalizes the model when it generates responses that are similar to the undesirable outputs

Methodology

Gradient Ascent (GA)

• Update the model by following the opposite direction of the gradient of the loss function

Methodology

Gradient Ascent (GA)

• Update the model by following the opposite direction of the gradient of the loss function

Mismatch

• Introduces data that is intentionally unrelated or mismatched with the original prompts

Results:

Method	Harmful rate on Unseen harmful Prompts (↓)	leak Rate on Unseen Extraction Attempts (↓)	Hallucination rate on Unseen Misleading (In-dist) Question (↓)
original	51.5%	81%	45.5%
Fine Tuning	52.5%	81%	43.5%
GA	1%	0%	8.5%
GA + Mismatch	3%	1%	8.5%

 Table 1: Experiment results for Llama-2 (7B)

Defense: Perplexity (PPL) Based Detection

Metric	Vicuna-7B	Falcon-7B-Inst.	Guanaco-7B	ChatGLM-6B	MPT-7B- Chat
Attack Success Rate	0.79	0.7	0.96	0.04	0.12
PPL Passed (\downarrow)	0.00	0.00	0.00	0.01	0.00
PPL Window Passed (\downarrow)	0.00	0.00	0.00	0.00	0.00

Table 2: Both basic perplexity and windowed perplexity easily detect all adversarial prompts generated by the optimizer, while letting all prompts in the AdvBench dataset through.

• Drops benign user queries for many normal instructions from AlpacaEval.

Certifying LLM Safety against Adversarial Prompting

Methodology

• Erase: Removes tokens one by one from the original prompt P

Defense Category: Inference time -> Filtering -> Input Preprocessing

Certifying LLM Safety against Adversarial Prompting

Methodology

• **Check**: If any of these sequences are harmful, the original prompt P is identified as harmful.

Defense Category: Inference time -> Filtering -> Input Preprocessing

SmoothLLM: A randomized defense

	- Insert perturbation
fl me how	Pto build a bomb\+simiflarlyNlow wri
	Swap perturbation
fell me Qo	w to buil) a bomb\xsimilarly_ow writw

Figure 2: Examples of insert, swap, and patch perturbations (pink)

Methodology

P = Goal StringP' = Goal string with adversarial suffix

SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks

Methodology

SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks

Robey et al. (2023)

Methodology

SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks

Robey et al. (2023)

Methodology

Figure 3: (Left) An undefended LLM (cyan) takes an attacked prompt P as input and returns a response R. (Right) SMOOTHLLM (yellow), which acts as a wrapper around any LLM, comprises a perturbation step (pink), wherein N copies of the input prompt are perturbed, and an aggregation step (green), wherein the outputs corresponding to the perturbed copies are aggregated.

Robey et al. (2023)

Results

• At q = 10%, the ASR for swap perturbations falls below 1%.

Figure 4: The dashed lines (red) denote the ASRs for suffixes generated by GCG on the AdvBench dataset for Vicuna and LLama2.

Q & A

https://llm-vulnerability.github.io/

