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Overview

Yao et al. (2023)

Large Language Model Unlearning

Defense Category: Training time -> Alignment -> Unlearning

• Penalizes the model when it generates responses that are similar to the undesirable outputs



Methodology

• Update the model by following the opposite direction of the gradient of the loss function

Large Language Model Unlearning

Defense Category: Training time -> Alignment -> Unlearning

Gradient Ascent (GA)

Yao et al. (2023)



Methodology

• Update the model by following the opposite direction of the gradient of the loss function

Large Language Model Unlearning

Defense Category: Training time -> Alignment -> Unlearning

Gradient Ascent (GA)

• Introduces data that is intentionally unrelated or mismatched with the original prompts

Mismatch

Yao et al. (2023)



Large Language Model Unlearning
Results:

Defense Category: Training time -> Alignment -> Unlearning

Method Harmful rate on 
Unseen harmful 

Prompts (↓) 

leak Rate on Unseen 
Extraction Attempts

(↓) 

Hallucination rate on 
Unseen Misleading (In-dist) 

Question  (↓) 

original 51.5% 81% 45.5%

Fine Tuning 52.5% 81% 43.5%

GA 1% 0% 8.5%

GA + 
Mismatch

3% 1% 8.5%

Table 1:  Experiment results for Llama-2 (7B)

Yao et al. (2023)
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Defense: Perplexity (PPL) Based Detection

Table 2: Both basic perplexity and windowed perplexity easily detect all adversarial prompts generated by 
the optimizer, while letting all prompts in the AdvBench dataset through.

• Drops benign user queries for many normal instructions from AlpacaEval.

Jain et al. (2023)

Metric Vicuna-7B Falcon-7B-Inst. Guanaco-7B ChatGLM-6B MPT-7B- 
Chat

Attack Success Rate 0.79 0.7 0.96 0.04 0.12
PPL Passed  (↓) 0.00 0.00 0.00 0.01 0.00

PPL Window Passed  (↓) 0.00 0.00 0.00 0.00 0.00



Methodology

Certifying LLM Safety against Adversarial Prompting

• Erase: Removes tokens one by one from the original prompt P

Kumar et al. (2023)

Defense Category: Inference time -> Filtering -> Input Preprocessing



Methodology

Certifying LLM Safety against Adversarial Prompting

• Check: If any of these sequences are harmful, the original prompt P is identified as harmful.

Defense Category: Inference time -> Filtering -> Input Preprocessing

Kumar et al. (2023)
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SmoothLLM: A randomized defense 

Figure 2: Examples of insert, swap, and patch perturbations (pink)

SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks

Robey et al. (2023)



Methodology

SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks

P = Goal String
P' = Goal string with adversarial suffix

Robey et al. (2023)



Methodology

R = Jailbroken Response 

SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks

Robey et al. (2023)



Methodology

SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks

Robey et al. (2023)



Methodology

Figure 3: (Left) An undefended LLM (cyan) takes an attacked prompt P as input and returns a response R. (Right) SMOOTHLLM (yellow), which 
acts as a wrapper around any LLM, comprises a perturbation step (pink), wherein N copies of the input prompt are perturbed, and an 
aggregation step (green), wherein the outputs corresponding to the perturbed copies are aggregated.

SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks

Robey et al. (2023)



Results

Figure 4: The dashed lines (red) denote the ASRs for suffixes generated by GCG on the AdvBench dataset for 
Vicuna and LLama2.

SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks

Robey et al. (2023)

● At q = 10%, the ASR for swap perturbations falls below 1%.
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Thank You!

Q & A 

https://llm-vulnerability.github.io/

https://llm-vulnerability.github.io/

