
Md Abdullah Al Mamun
3rd Year Ph.D. Student in CS at UC Riverside

Primary Research Area:

● Generative AI
● Secure AI Systems
● Privacy/Security of ML & LLM
● Federated Learning

Recent Research projects:

● ML models as storage channels and their (mis-)applications
● Bypassing guardrails in LLM

Advised by: Prof. Nael Abu-Ghazaleh

Website
LinkedIn
mmamu003@ucr.edu

https://www.cs.ucr.edu/~nael/
https://sites.google.com/view/aamamun
https://www.linkedin.com/in/ofmamun/
mailto:mmamu003@ucr.edu

Inference Time

Adversarial Training Jain et al. (2023)

How to
perform?

RLHF

DPO

Unlearning

Rafailov et al. (2023)

Yao et al. (2023)

Bai et al. (2022)

What to
perform?

Alignment

When to
perform?

Training Time

LLM
Defense

Filtering Input Preprocessing
Kumar et al. (2023)

Response processing

Robey et al. (2023)

Roadmap for Defenses

Defenses against Adversarial attacks on LLMs

How to
perform?

RLHF

DPO

Unlearning

Rafailov et al. (2023)

Yao et al. (2023)

Bai et al. (2022)

What to
perform?

Alignment

When to
perform?

Training Time

LLM
Defense

Roadmap for Defenses

Defenses against Adversarial attacks on LLMs

Overview

Yao et al. (2023)

Large Language Model Unlearning

Defense Category: Training time -> Alignment -> Unlearning

Overview

Yao et al. (2023)

Large Language Model Unlearning

Defense Category: Training time -> Alignment -> Unlearning

• Penalizes the model when it generates responses that are similar to the undesirable outputs

Methodology

• Update the model by following the opposite direction of the gradient of the loss function

Large Language Model Unlearning

Defense Category: Training time -> Alignment -> Unlearning

Gradient Ascent (GA)

Yao et al. (2023)

Methodology

• Update the model by following the opposite direction of the gradient of the loss function

Large Language Model Unlearning

Defense Category: Training time -> Alignment -> Unlearning

Gradient Ascent (GA)

• Introduces data that is intentionally unrelated or mismatched with the original prompts

Mismatch

Yao et al. (2023)

Large Language Model Unlearning
Results:

Defense Category: Training time -> Alignment -> Unlearning

Method Harmful rate on
Unseen harmful

Prompts (↓)

leak Rate on Unseen
Extraction Attempts

(↓)

Hallucination rate on
Unseen Misleading (In-dist)

Question (↓)

original 51.5% 81% 45.5%

Fine Tuning 52.5% 81% 43.5%

GA 1% 0% 8.5%

GA +
Mismatch

3% 1% 8.5%

Table 1: Experiment results for Llama-2 (7B)

Yao et al. (2023)

Inference Time

Adversarial Training Jain et al. (2023)

How to
perform?

RLHF

DPO

Unlearning

Rafailov et al. (2023)

Yao et al. (2023)

Bai et al. (2022)

What to
perform?

Alignment

When to
perform?

Training Time

LLM
Defense

Filtering Input Preprocessing
Kumar et al. (2023)

Roadmap for Defenses

Defenses against Adversarial attacks on LLMs

Defense: Perplexity (PPL) Based Detection

Table 2: Both basic perplexity and windowed perplexity easily detect all adversarial prompts generated by
the optimizer, while letting all prompts in the AdvBench dataset through.

• Drops benign user queries for many normal instructions from AlpacaEval.

Jain et al. (2023)

Metric Vicuna-7B Falcon-7B-Inst. Guanaco-7B ChatGLM-6B MPT-7B-
Chat

Attack Success Rate 0.79 0.7 0.96 0.04 0.12
PPL Passed (↓) 0.00 0.00 0.00 0.01 0.00

PPL Window Passed (↓) 0.00 0.00 0.00 0.00 0.00

Methodology

Certifying LLM Safety against Adversarial Prompting

• Erase: Removes tokens one by one from the original prompt P

Kumar et al. (2023)

Defense Category: Inference time -> Filtering -> Input Preprocessing

Methodology

Certifying LLM Safety against Adversarial Prompting

• Check: If any of these sequences are harmful, the original prompt P is identified as harmful.

Defense Category: Inference time -> Filtering -> Input Preprocessing

Kumar et al. (2023)

Inference Time

Adversarial Training Jain et al. (2023)

How to
perform?

RLHF

DPO

Unlearning

Rafailov et al. (2023)

Yao et al. (2023)

Bai et al. (2022)

What to
perform?

Alignment

When to
perform?

Training Time

LLM
Defense

Filtering Input Preprocessing
Kumar et al. (2023)

Response processing

Robey et al. (2023)

Roadmap for Defenses

Defenses against Adversarial attacks on LLMs

SmoothLLM: A randomized defense

Figure 2: Examples of insert, swap, and patch perturbations (pink)

SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks

Robey et al. (2023)

Methodology

SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks

P = Goal String
P' = Goal string with adversarial suffix

Robey et al. (2023)

Methodology

R = Jailbroken Response

SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks

Robey et al. (2023)

Methodology

SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks

Robey et al. (2023)

Methodology

Figure 3: (Left) An undefended LLM (cyan) takes an attacked prompt P as input and returns a response R. (Right) SMOOTHLLM (yellow), which
acts as a wrapper around any LLM, comprises a perturbation step (pink), wherein N copies of the input prompt are perturbed, and an
aggregation step (green), wherein the outputs corresponding to the perturbed copies are aggregated.

SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks

Robey et al. (2023)

Results

Figure 4: The dashed lines (red) denote the ASRs for suffixes generated by GCG on the AdvBench dataset for
Vicuna and LLama2.

SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks

Robey et al. (2023)

● At q = 10%, the ASR for swap perturbations falls below 1%.

Inference Time

Adversarial Training Jain et al. (2023)

RLHF

DPO

Unlearning

Rafailov et al. (2023)

Yao et al. (2023)

Bai et al. (2022)

Alignment

Filtering Input Preprocessing
Kumar et al. (2023)

Response processing

Robey et al. (2023)

Roadmap for Defenses

Defenses against Adversarial attacks on LLMs

Malicious
space

Safety training
coverage

😈

Thank You!

Q & A

https://llm-vulnerability.github.io/

https://llm-vulnerability.github.io/

